Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigate how the local density of states in a plasmonic cavity changes due to the presence of a distorting quantum emitter. To this end, we use first-order scattering theory involving electromagnetic Green’s function tensors for the bare cavity connecting the positions of the emitter that distorts the density of states and the one that probes it. The confined, quasistatic character of the plasmonic modes enables us to write the density of states as a Lorentzian sum. This way, we identify three different mechanisms behind the asymmetric spectral features emerging due to the emitter distortion: the modification of the plasmonic coupling to the probing emitter, the emergence of modal-like quadratic contributions and the absorption by the distorting emitter. We apply our theory to the study of two different systems (nanoparticle-on-mirror and asymmetric bow-tie-like geometries) to show the generality of our approach, whose validity is tested against numerical simulations. Finally, we provide an interpretation of our results in terms of a Hamiltonian model describing the distorted cavity.more » « less
-
Abstract The large cross sections and strong confinement provided by the plasmon resonances of metallic nanostructures make these systems an ideal platform to implement nanoantennas. Like their macroscopic counterparts, nanoantennas enhance the coupling between deep subwavelength emitters and free radiation, providing, at the same time, an increased directionality. Here, inspired by the recent works in parity-time symmetric plasmonics, we investigate how the combination of conventional plasmonic nanostructures with active materials, which display optical gain when externally pumped, can serve to enhance the performance of metallic nanoantennas. We find that the presence of gain, in addition to mitigating the losses and therefore increasing the power radiated or absorbed by an emitter, introduces a phase difference between the elements of the nanoantenna that makes the optical response of the system directional, even in the absence of geometrical asymmetry. Exploiting these properties, we analyse how a pair of nanoantennas with balanced gain and loss can enhance the far-field interaction between two dipole emitters. The results of this work provide valuable insight into the optical response of nanoantennas made of active and passive plasmonic nanostructures, with potential applications for the design of optical devices capable of actively controlling light at the nanoscale.more » « less
An official website of the United States government
